tensor
View Source
import numpy as np class Tensor: def __init__(self, n, units=''): self.n = np.array(n) self.forces = [] self.units = units if self.n.size == 2: self.x = self.n[0] self.y = self.n[1] # def __repr__(self): def __call__(self): return self.n # TODO: optimize distance-finding in gravity algorithm def distance(self, b): return np.linalg.norm(self.n-b.n) Scalar = Tensor Vector = Tensor Vec = Tensor # TODO: dimensions property # class Scalar(Tensor): # def __init__(self, n): # super().__init__(n) # # class Vector(Tensor): # def __init__(self, n): # super().__init__(n) # # class Vec(Tensor): # def __init__(self, n): # super().__init__(n)
View Source
class Tensor: def __init__(self, n, units=''): self.n = np.array(n) self.forces = [] self.units = units if self.n.size == 2: self.x = self.n[0] self.y = self.n[1] # def __repr__(self): def __call__(self): return self.n # TODO: optimize distance-finding in gravity algorithm def distance(self, b): return np.linalg.norm(self.n-b.n)
View Source
def __init__(self, n, units=''): self.n = np.array(n) self.forces = [] self.units = units if self.n.size == 2: self.x = self.n[0] self.y = self.n[1]
View Source
def distance(self, b): return np.linalg.norm(self.n-b.n)
View Source
class Tensor: def __init__(self, n, units=''): self.n = np.array(n) self.forces = [] self.units = units if self.n.size == 2: self.x = self.n[0] self.y = self.n[1] # def __repr__(self): def __call__(self): return self.n # TODO: optimize distance-finding in gravity algorithm def distance(self, b): return np.linalg.norm(self.n-b.n)
View Source
def __init__(self, n, units=''): self.n = np.array(n) self.forces = [] self.units = units if self.n.size == 2: self.x = self.n[0] self.y = self.n[1]
View Source
def distance(self, b): return np.linalg.norm(self.n-b.n)
View Source
class Tensor: def __init__(self, n, units=''): self.n = np.array(n) self.forces = [] self.units = units if self.n.size == 2: self.x = self.n[0] self.y = self.n[1] # def __repr__(self): def __call__(self): return self.n # TODO: optimize distance-finding in gravity algorithm def distance(self, b): return np.linalg.norm(self.n-b.n)
View Source
def __init__(self, n, units=''): self.n = np.array(n) self.forces = [] self.units = units if self.n.size == 2: self.x = self.n[0] self.y = self.n[1]
View Source
def distance(self, b): return np.linalg.norm(self.n-b.n)
View Source
class Tensor: def __init__(self, n, units=''): self.n = np.array(n) self.forces = [] self.units = units if self.n.size == 2: self.x = self.n[0] self.y = self.n[1] # def __repr__(self): def __call__(self): return self.n # TODO: optimize distance-finding in gravity algorithm def distance(self, b): return np.linalg.norm(self.n-b.n)
View Source
def __init__(self, n, units=''): self.n = np.array(n) self.forces = [] self.units = units if self.n.size == 2: self.x = self.n[0] self.y = self.n[1]
View Source
def distance(self, b): return np.linalg.norm(self.n-b.n)